What is the best power inverter for RV electrical system?

After explaining the three charging methods, I believe everyone has a certain understanding of the charging methods of RVs. Next, we will talk about inverters.

The choice of the inverter is the most critical for the RV. When the RV user is parked and resting, all the large electrical appliances in the RV run on the inverter. For example, AC air conditioners (including overhead air conditioners and household air conditioners), induction cookers, kettles, televisions and so on. If there is a problem with the inverter, it all becomes a fantasy.

There are currently two types of inverters on the market: low-frequency inverters and high-frequency inverters. The modified inverter is no included, and the inverters referred to are all sine waves.

1. Advantages of low-frequency inverter
Three times the peak power, strong load capacity, strong shock resistance, and a high-power charger Disadvantages of low-frequency inverter Large size, heavy weight, low conversion efficiency, large no-load loss, large heat generation.

2. Disadvantages of high-frequency inverter
Double times the peak power (some manufacturers have provided triple peak power), and the load capacity is weaker than the low-frequency. Generally, there is no charger or low-power charger.
Advantages of high-frequency inverter, small size, light weight (only about 20% of low frequency inverter), high conversion efficiency (about 10% higher than low-frequency inverter), low no-load loss (only about 15% of low frequency machine), low heat generation. The long-term working shell temperature is not higher than 40 degrees (when the ambient temperature is 25 degrees).

After comparing the advantages and disadvantages, we found that the low frequency inverter is stronger than the high frequency inverter in impact resistance, and will come with a high-power charger, which makes the installation much easier.

However, it is also obvious to find that the advantages of high-frequency inverters may be more suitable for use in an RV, because the inverters are mostly installed under the seat, under the bed, or in the storage box at the rear of the car; the location of the inverter installed is small and not ventilated.

Most manufacturers are not particularly professional circuit engineers. they only think that will be fine they can put down the inverter. In fact, this enclosed space is extremely unfavorable to the inverter.

After the ambient temperature rises, it cannot be dispersed for a long time, resulting in that the components inside the inverter are aging quickly. If they are maintained at high temperature for a long time (although the inverter has over-temperature protection), the internal components are also prone to failure, causing the inverter to be damaged and unable to output.

We have seen a lot of low-frequency inverters installed by RV users, when the air conditioner is turned on, the inverter over-temperature protection does not work in the middle of the night, or the charging module is broken. Some users suggested that if you don’t need a large load, you need to turn off the inverter, because if you don’t turn on the load, the low frequency inverter has a loss of 100-200W, and it consumes 0.1-0.2KWH electricity in one hour. This has created a very difficult decision for many users.

Therefore, when choosing an inverter, we recommend that a more reasonable configuration of the inverter will make your RV AC power supply smoother.


See more for Basic RV Electrical System Guide 2022 >>
Get A Quote